In vivo administration of recombinant methionyl human stem cell factor expands the number of human marrow hematopoietic stem cells.
نویسندگان
چکیده
A growing number of in vitro studies suggest that recombinant human stem cell factor (SCF) is capable of augmenting the proliferative capacity of human hematopoietic progenitor cells (HPC) and stem cells (HSC). We further evaluated this biologic effect by analyzing the response of bone marrow (BM) HPCs and HSCs to the administration of SCF in eight patients with locally advanced or metastatic breast cancer who were enrolled in an ongoing phase I study. SCF was administered for 14 days by daily subcutaneous injection at dosages of 10, 25, or 50 micrograms/kg/d. BM CD34+ HLA-DR+ and CD34+ HLA-DR- CD15- cells, previously shown by our laboratory to be enriched for various classes of differentiated and primitive HPCs, respectively, were quantitated in BM samples on day 0 (pretreatment) and day 15 (posttreatment). These CD34+ HLA-DR+ and CD34+ HLA-DR- CD15- cells were then isolated by cell-sorting and assayed for several classes of HPCs, including the high--proliferative potential colony-forming cell (HPP-CFC), the burst-forming unit--megakaryocyte (BFU-MK), and the long-term BM culture--initiating cell (LTBMC-IC). SCF administration resulted in a 3.3-fold (range, 1.4- to 18.8-fold; P = .018) increase in the absolute numbers of CD34+ cells, a 3.7-fold (range, 1.2- to 8.2-fold; P = .028) increase in the absolute numbers of CD34+ HLA-DR+ cells, and a 2.4-fold (range, 1.1- to 29.3-fold; P = .010) increase in the absolute numbers of CD34+ HLA-DR- CD15- cells. Following the infusion of SCF, a statistically significant increase in the absolute numbers of HPP-CFC (P = .018), BFU-MK (P = .046), CFU-granulocyte, erythrocyte, monocyte, megakaryocyte (CFU-GEMM: P = .043), BFU-erythrocyte (BFU-E; P = .043), CFU-granulocyte, macrophage (CFU-GM; P = .045), and CFU-megakaryocyte (CFU-MK; P = .028) per milliliter of marrow was observed. Stromal cell-free LTBMCs supplemented with SCF and interleukin-3 (IL-3), initiated with CD34+ HLA-DR- CD15- cells obtained on day 0, produced viable cells for 9.6 weeks, compared with 11.5 weeks for LTBMCs initiated with CD34+ HLA-DR- CD15- cells obtained on day 15. Cumulative cellular production by LTBMCs initiated with day 15 CD34+ HLA-DR- CD15- cells was statistically greater than that by day 0 LTBMCs (P = .031). These same cultures produced CFU-GM for 6.3 weeks (day 0) versus 9 weeks (day 15).(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells
Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...
متن کاملتاثیر آشیانههای جفتی شبیهسازی شده با داربست پلی لاکتیک اسید در تکثیر سلولهای بنیادی خونساز مشتق از بافت جفت انسانی
Background and Objective: Nowadays, although umbilical cord blood is a commonly used source of hematopoietic stem cell, its low frequency of these cells is the main factor limiting its clinical application. The transplantation of hematopoietic stem cells derived from placenta tissue along with umbilical cord blood cells of the same sample may be an appropriate approach to solve this problem. In...
متن کاملبررسی اثر آگونیست -آدرنرژیکی ایزوپروترنول بر بیان miR-886-3p و miR-23a در سلولهای بنیادی مزانشیمی مغز استخوان انسان
Background and Objective: Mobilization of Hematopoietic Stem Cells (HSCs) for transplantation and the importance of -adrenergic signals in induction of this process have been well investigated. However, little is known about the role of -adrenergic signals in mobilization of HSCs and factors influenced by these signals. The Chemokine Stromal Derived Factor -1 (SDF-1) which is expressed by hum...
متن کاملEXPANSION OF HUMAN CORD BLOOD PRIMITIVE PROGENITORS IN SERUM-FREE MEDIA USING HUMAN BONE MARROW MESENCHYMAL STEM CELLS
Ex vivo expansion of human umbilical cord blood cells (HUCBC) is explored by several investigators to enhance the repopulating potential of HUCBC. The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation. Using primary human mesenchymal stem ...
متن کاملA Review of Procedures Involved in Human Umbilical Cord Blood Banking and Transplantation
Cord blood hematopoietic stem cells are widely used as an alternative source for hematopoietic stem cells transplant. Increasing rate of patients who need hematopoietic stem cells transplant and many advantages of cord blood in comparison to bone marrow hematopoietic stem cells, have promoted banking of cord blood units. Cord blood banking requires accurate steps in donor selection, cord blood ...
متن کاملExpansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells
Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 82 3 شماره
صفحات -
تاریخ انتشار 1993